Nuclear Fusion Bombs

Introduction:
In physics and nuclear chemistry, nuclear fusion is the process by which multiple atomic particles join together to form a heavier nucleus. It is accompanied by the release or absorption of energy. Iron and nickel nuclei have the largest binding energies per nucleon of all nuclei and therefore are the most stable. The fusion of two nuclei lighter than iron or nickel generally releases energy while the fusion of nuclei heavier than iron or nickel absorbs energy; vice-versa for the reverse process, nuclear fission.

Occurance:
Nuclear fusion occurs naturally in stars. Artificial fusion in human enterprises has also been achieved, although not yet completely controlled. Building upon the nuclear transmutation experiments of Ernest Rutherford done a few years earlier, fusion of light nuclei (hydrogen isotopes) was first observed by Mark Oliphant in 1932, and the steps of the main cycle of nuclear fusion in stars were subsequently worked out by Hans Bethe throughout the remainder of that decade. Research into fusion for military purposes began in the early 1940s, as part of the Manhattan Project, but was not successful until 1952. Research into controlled fusion for civilian purposes began in the 1950s, and continues to this day.

Requirements:
A substantial energy barrier must be overcome before fusion can occur. At large distances two naked nuclei repel one another because of the repulsive electrostatic force between their positively charged protons. If two nuclei can be brought close enough together, however, the electrostatic repulsion can be overcome by the nuclear force which is stronger at close distances.

When a nucleon such as a proton or neutron is added to a nucleus, the nuclear force attracts it to other nucleons, but primarily to its immediate neighbors due to the short range of the force. The nucleons in the interior of a nucleus have more neighboring nucleons than those on the surface. Since smaller nuclei have a larger surface area-to-volume ratio, the binding energy per nucleon due to the strong force generally increases with the size of the nucleus but approaches a limiting value corresponding to that of a fully surrounded nucleon.

The electrostatic force, on the other hand, is an inverse-square force, so a proton added to a nucleus will feel an electrostatic repulsion from all the other protons in the nucleus. The electrostatic energy per nucleon due to the electrostatic force thus increases without limit as nuclei get larger.

Energy evolve:
Using deuterium-tritium fuel, the resulting energy barrier is about 0.01 MeV. In comparison, the energy needed to remove an electron from hydrogen is 13.6 eV, about 750 times less energy. The (intermediate) result of the fusion is an unstable 5He nucleus, which immediately ejects a neutron with 14.1 MeV. The recoil energy of the remaining 4He nucleus is 3.5 MeV, so the total energy liberated is 17.6 MeV. This is many times more than what was needed to overcome the energy barrier.

If the energy to initiate the reaction comes from accelerating one of the nuclei, the process is called beam-target fusion; if both nuclei are accelerated, it is beam-beam fusion. If the nuclei are part of a plasma near thermal equilibrium, one speaks of thermonuclear fusion. Temperature is a measure of the average kinetic energy of particles, so by heating the nuclei they will gain energy and eventually have enough to overcome this 0.01 MeV. Converting the units between electronvolts and kelvins shows that the barrier would be overcome at a temperature in excess of 120 million kelvins, obviously a very high temperature.

Mathematical Expressions:
The reaction cross section is a measure of the probability of a fusion reaction as a function of the relative velocity of the two reactant nuclei. If the reactants have a distribution of velocities, e.g. a thermal distribution with thermonuclear fusion, then it is useful to perform an average over the distributions of the product of cross section and velocity. The reaction rate (fusions per volume per time) is times the product of the reactant number densities:

f=n1n2(v)
If a species of nuclei is reacting with itself, such as the DD reaction, then the product n1n2 must be replaced by (1 / 2)n2.

Increases from virtually zero at room temperatures up to meaningful magnitudes at temperatures of 10 100 keV. At these temperatures, well above typical ionization energies (13.6 eV in the hydrogen case), the fusion reactants exist in a plasma state.

The significance of as a function of temperature in a device with a particular energy confinement time is found by considering the Lawson criterion.

Neutronicity, confinement requirement, and power density:
Any of the reactions above can in principle be the basis of fusion power production. In addition to the temperature and cross section discussed above, we must consider the total energy of the fusion products Efus, the energy of the charged fusion products Ech, and the atomic number Z of the non-hydrogenic reactant.

Specification of the D-D reaction entails some difficulties, though. To begin with, one must average over the two branches (2) and (3). More difficult is to decide how to treat the T and He products. T burns so well in a deuterium plasma that it is almost impossible to extract from the plasma. The D-He reaction is optimized at a much higher temperature, so the burnup at the optimum D-D temperature may be low, so it seems reasonable to assume the T but not the He gets burned up and adds its energy to the net reaction. Thus we will count the DD fusion energy as Efus = (4.03+17.6+3.27)/2 = 12.5 MeV and the energy in charged particles as Ech = (4.03+3.5+0.82)/2 = 4.2 MeV.

Another unique aspect of the D-D reaction is that there is only one reactant, which must be taken into account when calculating the reaction rate.