The periodic table is one of the most well-known systems in chemistry and is used to classify the known elements. It is commonly used in chemical engineering, physics, biology and other hard sciences. Even though it is in widespread use, some confusion still exists about the patterns and components of the table. However, after the major parts are explained, the usefulness of the table becomes more obvious.
Basic Details
The first thing you notice when looking at the table are the obvious letters and numbers. The letters are the abbreviations for each represented element. Some are obvious, like O for oxygen and N for nitrogen, while others aren’t nearly so simple, like Fe for iron or K for potassium. The numbers are the atomic numbers, or number of protons in the nucleus (and number of electrons if the element is chemically neutral). The table is ordered by this atomic number and allows for the periodic trends explained below.
When first designed, the periodic table included a naturally occurring “periodic” pattern. This pattern exists because elements had repeating characteristics that made them easy to classify. For instance, carbon generally reacts with elements in groups of four because of the 4 valence electrons available for binding. So similarly binding elements, like silicon, were grouped together.
Categorization (Groups, Blocks and Periods)
The periodic nature of the table allowed for groupings based on similar properties. This led to a system of classifications known as groups, blocks and periods found within the table.
The first category is known as a group. Also known as families, groups are the vertical columns of the table and present the easiest classification system in the table. The elements in a group have very similar properties, despite different atomic numbers and other atomic properties. For instance, group 18 is known as the noble gases. They are found in the 18th, or last, column of the table. They all display little reactivity with other elements and have the same basic properties: odorless, colorless gases.
Next are blocks, which are the separated regions of the table that have similar general properties defined by their electron configuration. For instance, groups 3 through 12 represent what are known as the transition elements. They are all metals with some level of reactivity to other elements. This categorization allows broader classifications within the table that take advantage of larger periodic trends.
Lastly are the periods, which are horizontal rows in the table. While they don’t generally have similarities, they represent repeating electron conditions. For instance, as you move across each period you can see trends that include changes in atomic radius, electronegativity, and ionization energy. While they aren’t strictly increasing the whole way across, the pattern in each row appears to repeat from row to row.